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MATHEMATICAL MODELING 

Mathematical  modeling  consists  of  translating  real  world  
problems into  mathematical  problem,  solving  the  
mathematical  problems and interpreting  these  solutions  
in  the  language  of  the  Real world  problem. 

 

 Real 

Problem 

Mathematical 

Problem 

Mathematical 

Solution 

Interpretation 

 



. 

A  Real  world  problem,  as  it  is,  can  not  be  translated  into mathematical 
problem  and  even  if,  it can  be  translated,  it may  not  be  possible  to  solve 
resulting Mathematical  problem. 

 
   Therefore,  it  is necessary  to  simplify  or  approximate  the  problem  which is  
quite  close  to  the  original  problem  by  retaining  all  the  essential  features of 
the  problem  and giving  up  those  feature  which  is  not  very  essential  or 
relevant   to  the  situation  we  are  investigating. 
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MATHEMATICAL MODELING : CLASSIFICATION 

 
 
1. Mathematical Models may be classified according to  

      the subject matter of the models. Therefore we have 

 

i. Mathematical Models in Physics 

ii. Mathematical Models in Chemistry 

iii. Mathematical Models in Biology 

iv. Mathematical Models in Medicine 

v. Mathematical Models in Economics 

vi. Mathematical Models for Blood flows 

vii. Mathematical Models in environment and so on. 



  

2. Mathematical Models may be classified according to 
purpose we have, so we have 

 
i. Mathematical Models for Description  

ii. Mathematical Models for Insight 

iii. Mathematical Models for Prediction 

iv. Mathematical Models for Optimization 

v. Mathematical Models for Control 

vi. Mathematical Models for Action 

 

 

 



         
3. Mathematical Models may be classified according to 

the Mathematical techniques used in solving them, 
Therefore we have 
 

i. Mathematical Modeling through Classical algebra 

ii. Mathematical Modeling through Linear algebra 

iii. Mathematical Modeling through Ordinary and Partial differential equations 

iv. Mathematical Modeling through Integral equations 

v. Mathematical Modeling through Integral differential equations 

vi. Mathematical Modeling through functional equations 

vii.  Mathematical Modeling through graphs 

viii. Mathematical Modeling through mathematical programming and so on… 

 



  

4. Mathematical Models may be classified according to 
their nature, Thus 

        
i. Mathematical Models may be Linear or Nonlinear according as basic 

equations are linear or nonlinear 

 

ii. Mathematical Models may be Static or Dynamic according as the time 
variations in the system are not or taken into account. 

 

iii. Mathematical Models may be Deterministic or Stochastic as the chance 
factors are not or taken into account. 

 

iv. Mathematical Models may be Discrete or Continuous according as the 
variables involved are discrete or continuous. 



Few points to consider: 

 
     Before formulating a mathematical model we should 

consider following points 
  
i.  Linear, static, deterministic models are usually easier 

to handle    than Nonlinear, dynamic, stochastic models 
and give good approximate answers to our problems. 
 

ii. Continuous models appear to easier to handle than the 
discrete models, due to the development of calculus of  
differential  equations. 
 

 



Few Points to be consider ….. 

 However continuous models are simpler, only when analytical 
solutions are available, otherwise we have to approximate a 
continuous model also by discrete model so that these can be 
handled numerically. 

 

 When the variables are discrete we may still use continuous 
models to be able to use calculus and differential equations 
similarly. 

  

 When the variables are essentially continuous we may still use    
a discrete model to be able to use Computers. 
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Advantage of Numerical Calculation over 
experimental investigation: 

 

• Low Cost:  Cost of a Numerical 
Techniques/Computer run is lower than the 
cost of a corresponding experimental 
investigation. 

 

• Speed:  A designer can study hundreds of 
different configuration in less than a day and 
can choose the optimum design. 
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Advantage of Numerical Calculation over 

experimental investigation: 
 • Complete Information:  It  can provide the values of all 

relevant variables (such as velocity, pressure, 
temperature and concentration) through out the 
domain of interest. Obviously, no experimental study 
can provide it. 
 

• Ability to Simulate realistic conditions:  For a 
computer simulation there is little difficulty in having 
very large or very small dimensions, in treating very 
low or very high temperatures, in handling toxic or 
flammable substances, or in following very fast or very 
slow processes  
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Few Points to recognize 

•  A computer analysis works out the implications of a 
mathematical model. The experimental investigation, by 
contrast observes the reality itself. Therefore validity of 
mathematical model is important for the usefulness of 
computation. 

 
•  Result from computer simulation depends on both the 

mathematical model and the numerical method. A perfectly 
satisfactory numerical technique can produce worthless 
results if an adequate mathematical model is not employed. 
 

•  Similarly, Computer simulation will return meaningless 
results if proper numerical techniques are not employed 
even if one uses a perfectly adequate mathematical model. 
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Few Points to recognize: 
 

• If required results have a very little objective 
(such as finding the overall pressure drop for a 
complicated apparatus) the computation may 
not be less expensive than an experiment. 
 
 

• For difficult problem involving complex 
geometry, strong non-linearity, Sensitive fluid 
property variations, a numerical solution may be 
hard to obtain and would be excessively 
expensive if at all possible .   
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  Epidemics :  
 
      An epidemic is the rapid spread of infectious disease to a large number of 

people in a given population within a short period of time, usually two 
weeks or less. 

 
Biomechanics 

     ‘Biomechanics’ is the application of mechanical principles on living 
organisms. 

 
Biofluid mechanics 

• Biofluid mechanics is the study of a certain class of biological problem from a 
fluid mechanics point of view.  

 
• Biofluid mechanics does not involve any new development of the general 

principal of fluid mechanics but it does involve some new applications of the 
method of fluid mechanics.  

 
Biomechanics of circulation 

    
     Under most circumstances, blood flow can be modeled by the Navier-Stokes 

equations. 
 
 
 



Why Bio-Fluid Mechanics ?? 

• Designing a new device for the knowledge of fluid mechanics of 
biological system. 

 

• To increase the efficiency of certain devices, study of fluid 
mechanics can help. 

 

• Certain human disease can be prevented/cured by understanding 
the fluid mechanics of certain human organs. 

 

• To improve the understanding of a biological system which can be 
put, to use for higher productivity/yield such as in plants.  



Transport Phenomena in Human Body 

 

Study of Fluid Flow is important for understanding of  

 

•Transport of particles: ions, molecules and proteins. 

 

•Transport of Dissolved species: Gases, electrolytes, nutrients   and 
waste products. 

 

•Wall loading: Pressure and wall shear stress and hence deformation 
of the artery. 



Types of fluid flow found in the human body 

• Blood flow in cardiovascular system. 

• Flow of synovial fluid in synovial joint. 

• Fluid flow in eyes. 

• Flow in kidney, ureter etc. 

 

These flow can be governed by Navier-Stoke’s equations under 
certain conditions. 

 

A simple model which is useful for understanding blood flow is 
Poiseuille flow. 

 



  



  



  

 Navier–Stokes equations 

 

 

 

 

 

Equation of Continuity  

 

 

 



Plane Poiseuille Flow 

 Consider the steady laminar flow of viscous 
incompressible fluid between two infinite 
parallel plates separated by a distance h.  

      x  -  direction of flow,  
      y  - direction perpendicular to the flow, and 

z   -width of the plates parallel to z-direction 
   Assumptions: 
1. The width of plates is large compared with h 

and hence the flow may be treated as two-
dimensional  

              
  
2.  The plates is long enough in the x-direction 

for the flow to be parallel.  
 
 
 

3. The flow being steady, the  flow variables are 
independent of time                 
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The equation of continuity: 

                                                            …….(1) 

 

  reduces to 

                                                       

 

 

Navier-Stokes equation for x and y direction reduces 
to 
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 equation (3) shows that the pressure does not depend on y 

 

                                         only 

So equation (2) reduces to 

 

 

 

Differentiating both side of (4) w. r. to x 

 

                                            or 

So that 
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  then (4) reduces to 
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Integrating (6) 
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Where A and B can be determined by the boundary condition 



  
   for the so called plane Poiseuille flow the plates are kept at rest and 

the fluid is kept in motion by a pressure gradient P. Let the two plates 
be situated at y = -h/2 and y = h/2. The axis of x is along the centre 
between two plates. 

 

      Using the no-slip condition the boundary condition, for the problem 
are: 

                                             and                                         …….(9) 

 

     Using (9) in (8) we get 

 

 

    Finally, we get 
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SIR model for epidemics 
(compartmental model) 

S  I   with rate   (infection rate) 

I R   with rate   (recovery rate) 

NRIS 

N: number of individuals in the population 

 

S: number of Susceptible individuals 

I: number of Infective individuals 

R: number of Removed (recovered/dead) individuals 
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SIR model for epidemics 

i
dt

tdr

isi
dt

tdi

si
dt

tds













)(

)(

)(

1 ris
s=S/N: density of Susceptible individuals 

i=I/N: density of Infective individuals 
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SIR model for epidemics 

s  i   (infection rate) 

i  r   (recovery rate) 

s: susceptible 

i:  infected 

r:  recovered 
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SIR model for epidemics: 
numerical integration 50.10 R
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Epidemic controls: 

 Reduce s(t): vaccination 

 Reduce : wash hands, isolate sick persons,    

                    shut down public events, close schools 

 Increase : better/faster acting medicine, antivirals  

How do you control epidemics? 
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i.e., at any time (preferably before the outbreak), if we can sufficiently reduce  

the density of susceptible individuals (by vaccinating),  the epidemics will die out 
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for example,  

for Ro = 1.5    sc = 0.66, i.e., roughly 33% percent of the population should be vaccinated  

 

for Ro = 3.0    sc = 0.33, i.e., roughly 66% percent of the population should be vaccinated 
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INTRODUCTION  
 

The biomechanics of human joint, called the synovial joint, plays a significant 

role in the study of human locomotion. A synovial joint consists of load bearing 

bone whose ends are covered by articular cartilage lubricated by synovial fluid. 

Articular cartilage serves as the load bearing material of diarthrodial joints, with 

excellent friction, lubrication and wear characteristics, both the composition and 

structure of cartilage vary through the depth of the tissue. In normal articular 

cartilage, the water content decreases from more than 80% at the surface to 65% 

in the deep zone. The synovial fluid impregnates movable joints of the body and 

is obtained in the capsules of the joints in different volumes (roughly about 0.2 

ml). This fluid although compositionally bears some resemblances to blood 

plasma lacks all the clotting agents such as fibrinogen.  
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Fig. 1.1: (A) Human Knee Joint 1. (B) Enlargement of the load 

bearing region in the knee depicting a layer of synovial fluid 

and two layers of articular cartilage. 



 It serves as a lubricant between cartilage surfaces. 

 It carries out metabolic functions by providing nutrients to the  cartilage. 

  It regulates the temperature in synovial joint. 

  It disperses the nutrients from the synovial fluid to articular cartilage. 

     Function of articular cartilage  

 It provides near frictionless bearing surface under normal conditions and wear 

rates.  

   It spreads the loads resulting from joint function. Holmes and co-workers have 

characterized the manner with which articular cartilage can also act to absorb 

energy during cyclical compressive deformation.      

39 

Functions of Synovial Fluid: 
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Zones of the articular cartilage 
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The superficial, in this zone, the collagen fiber serve mainly 

to support the stresses generated when compressive loads 

are applied to the cartilage.  

In Zone II the transitional intermediate zone collagen fiber 

are randomly oriented and chondrocytes are randomly 

dispersed. Chondrocytes in this region are stiffest and 

produce a specific superficial zone protein that aids in 

providing articular cartilage with its lubricating surface and 

prevents undesirable cell adhesion in this region [Flannery et 

al. (1999)].  

In zone III, the deep radial zone the collagen fiber project 

radically from the bone; the chondrocytes exit to as rows of 

cell parallel to collagen fibers.  

The calcified zone, Zone IV is the region that connects the 

cartilage to the subchondral bone. Fibers nearer to the bone 

are progressively more mineralized, and the cartilage and 

bone are interfaced in an interlocking mesh.  



Interstitial fluid flow affects the nutrition of cartilage. 

Deformation of cartilage strongly influenced by the 

exudation and imbibition of interstitial fluid. Hirsch 

conjectured that circulation of tissue juices, decreased as the 

cartilage lost its elasticity thereby reducing the mechanism 

for its nutrition. For small solutes such as glucose, diffusion 

is the controlling mechanism where as a mechanical 

pumping action probably governed the transport of solutes 

of larger molecules weight such as serum albumin.  

It is generally believed that the biphasic nature of cartilage 

is responsible for providing all these important functional 

characteristics in the joint. The remarkable performance of 

the lubrication of load bearing human joint is well known 

but the dispersion of nutrients from the synovial fluid to the 

articular cartilage and temperature regulation have not been 

given much attention.  42 
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The metabolic function is important to 

understand normal and abnormal synovial joint 

motion, especially if one seeks some leading 

causes of the degenerative joint disease. The 

concentration of hyaluronic acid molecules and 

other high molecular weight substances in the 

synovial fluid may be responsible to disperse the 

nutrients into the cartilage. 

We construct some mathematical models for 

normal and artificial synovial joints as a two 

region mixed boundary value problem involving  

lubrication, diffusion and energy transfer.  
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 Lubrication of Synovial Joint. 

 Nutritional Transport  

 Heat Generation in Synovial Joint. 



A two region flow model has been developed in this paper in the presence of external 

magnetic field for the better understanding of synovial joint lubrication mechanism. The 

model consists of two parallel porous cartilageous surfaces separated by a thin film of non-

newtonian lubricant representing the synovial fluid which is assumed to behave like a 

paramagnetic fluid system. In this paper, we have represented the cartilage by a mixture of 

two interacting continua and synovial fluid by viscoelastic fluid. A transverse magnetic 

field is applied to the system. We have used the modified form of Darcy’s law given by 

Zahn and Rosenweig; to describe the penetration dynamics of magnetic fluids through 

porous media. Because of exact solution not being possible for the governing non-linear 

partial differential equations, the perturbation method has been used to obtain approximate 

solutions. The results have been obtained by computational techniques and compared by 

results available in the literature. In this paper, the possibility of increased efficiency of 

joint lubrication, particularly in diseased states by the application of applied magnetic 

fields has been explored. The applied magnetic field increases the load carrying capacity. 

This helps in sustaining greater loads. Similarly, the viscoelastic parameter describes the 

increase in the concentration of the suspended hyaluronic acid molecules which, in turn, 

increases the overall viscosity of the lubricant, which also helps in sustaining greater loads. 

 

  

EFFECT OF MAGNETIC FIELD IN LUBRICATION OF SYNOVIAL JOINTS 
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FORMULATION OF THE PROBLEM 

 

  Fig. 4.1 (a, b) describe the knee joint and its simplified geometrical counterpart. It 

consists of porous flat plates of thickness 𝐻′  approaching each other from initial gap 

of  2ℎ0.  Thickness of the fluid film at any time is 2ℎ′. Fig. 4.1 (b) is symmetrical about 

𝑦′ = 0. The whole system is divided in to two regions. 
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 Simplified geometrical counterpart of Knee joint 



FORMULATION OF THE PROBLEM 

The governing differential equations are given by 

− 
𝜕𝑝′

𝜕𝑥′  +  𝜇
𝜕

𝜕𝑦′

𝜕𝑢′

𝜕𝑦′  −  𝜀0
𝜕𝑢′

𝜕𝑦′

3

+ 𝜇′0 𝑀1
𝜕

𝜕𝑥′ 𝐻𝑥′ + 𝑀2
𝜕

𝜕𝑦′ 𝐻𝑥′ = 0      

      

 
𝜕𝑝′

𝜕𝑦′  +  𝜇′0 𝑀1
𝜕

𝜕𝑥′ 𝐻𝑦′ + 𝑀2
𝜕

𝜕𝑦′ 𝐻𝑦′  = 0 

 

 𝛻 × 𝐻 = 0,   𝐻 =  − 𝛻∅  
       

 𝛻𝐵 = 0,       𝐵 = 𝜇′0 𝐻 + 𝑀      

                              

 𝑀 = 𝜇 𝐻 
𝜇𝑟 = 1 + 𝜇                                                                                                                       
and equations of continuity is given by 

 
𝜕u′

𝜕x′  +  
𝜕v′

𝜕y′ =  0              
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Boundary and Matching Conditions: 

 

To solve Eqn. (4.1) to (4.3), the appropriate mathematical forms of the boundary and 

matching conditions are given below: 

  

𝜕𝑢′

𝜕𝑦′
= 0                                                     𝑎𝑡    𝑦′ =  0 

𝑢′ +
𝑘′

0

𝜇′

𝜕𝑝𝛩′

𝜕𝑥′
= −𝜎′  

𝜕𝑢′

𝜕𝑦′
                     𝑎𝑡     𝑦′ = ℎ′ 

𝑝∗′ 𝑎𝑛𝑑 𝑝𝛩′
= 0                                      𝑎𝑡      𝑥′ = ±𝓁′                                  

 
𝜕𝑝𝛩

𝜕𝑥′ = 0,
𝜕𝑝∗′

𝜕𝑥′ = 0,                                  𝑎𝑡       𝑥′ = 0 

𝑝∗′  =  𝑝𝛩′                                                𝑎𝑡       𝑦′ = ℎ′ 
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Non-Dimensional Scheme: 

𝑥 =  
𝑥′

𝓁′
  ,       𝑦 =  

𝑦′

ℎ0
    ,    𝑝∗ = 

𝑝∗′

𝜌𝑣0
2, 

𝑃𝛩 =
𝑝𝛩′

𝜌𝑣0
2    ,   ℎ =   

ℎ′

ℎ0
   ,  𝑢 =   

𝑢′

𝑣0
  ,  𝜇′ =

𝜇 

𝜇1
, 

𝑣 =   
𝑣′

𝑣0
  ,    𝑘0  =   

𝑘′0

ℎ𝑜
   , 𝐻 =  

𝐻′

ℎ0
 , 𝐻𝑒 =

𝐻′
𝑒

𝐻0
  

ℎ′0  =   
ℎ0

𝓁′   ,   𝑅𝑒 =   
𝜌𝑣0ℎ0

𝜇
    , 𝑃𝑒 = 

𝑣0ℎ0

𝐷0
 

 non-dimensional parameters 

 𝜀 =  𝜀0
𝑉2

ℎ0
2 
     ,  𝜎 =  

𝜎1

ℎ0
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Solution of the problem: 

The non-dimensional form of the governing equation of motion, equation of continuity 

and boundary conditions are given below.  

 −
𝜕𝑝∗

𝜕𝑥
+

1

𝑅𝑒ℎ′0
 

𝜕2𝑢

𝜕𝑦2 − 3𝜀
𝜕𝑢

𝜕𝑦

2 𝜕2𝑢

𝜕𝑦2  = 0                                                          (4.27) 

−
𝜕𝑝∗

𝜕𝑦
= 0                                                                                                                 (4.28) 

 ℎ′0
𝜕2𝑝𝛩

𝜕𝑥2  +  
𝜕

𝜕𝑦
 1 − 𝛽′𝑦

𝜕𝑝𝛩

𝜕𝑦
= 0                                                                      (4.29) 

Boundary and matching Condition in non-dimensional form: 

 
𝜕𝑢

𝜕𝑦
= 0                                                   𝑎𝑡 𝑦 =  0 

𝑢 + 
𝑘0𝑅𝑒

𝓁

𝜕𝑝𝛩

𝜕𝑥
=  −𝜎1  

𝜕𝑢

𝜕𝑦
                 𝑎𝑡       𝑦 = ℎ      

 𝑝∗ 𝑎𝑛𝑑 𝑝𝛩 = 0                                 𝑎𝑡  𝑥 =  ±1                       (4.30) 

𝜕𝑝∗

𝜕𝑥
   𝑎𝑛𝑑  

𝜕𝑝𝛩

𝜕𝑥
= 0 ,                 𝑎𝑡   𝑥 = 0 

𝜕𝑝𝛩

𝜕𝑦
= 0 ,                                       𝑎𝑡  𝑦 = ℎ + 𝐻 

𝑝∗  =  𝑝𝛩                                               𝑎𝑡   𝑦 = ℎ  𝑎𝑛𝑑    𝐻𝑒
2 = 1 − 𝑥2   
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Solution of the Problem: 

To obtain the solutions for the pressure and velocity in the fluid film region, 

perturbation technique is applied, which is based on the following assumptions.  

1. Restricted the solution for the small values of the 𝜀. 

2. In the limiting case of 𝜀 → 0, the corresponding solutions for viscous lubricants are 

derivable from the approximate solutions so obtained. The variables are assumed in 

a sequence of the functions in terms of the small viscoelastic parameters 𝜀: 

𝑓 = 𝑓0 +  𝜀𝑘𝑓𝑘

∞

𝑘=1

 

  

Where 𝑓0 is the limiting solution for the viscous fluid as 𝜀 → 0.  

Since 𝜀 is the small so that the approximate solution is obtained by truncating the series  

𝑓 ≈ 𝑓0 + 𝜀𝑓1 
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FORMULATION OF THE PROBLEM 

Porous Matrix 

  Using modified Darcy’s law [Zahn et al (1980)] flow of magnetic fluid in a porous 

matrix is given by 

𝑢 ′ = − 
𝑘𝑥′

𝜇

𝜕𝑝 ′

𝜕𝑥′  + 𝜇′0
𝑘𝑥′

𝜇
 𝑀1

𝜕

𝜕𝑥′ 𝐻𝑥′ + 𝑀2

𝜕

𝜕𝑦′ 𝐻𝑥′                                             4.8  

𝑣 ′ = − 
𝑘
𝑦′

𝜇

𝜕𝑝 ′

𝜕𝑦′  + 𝜇′0
𝑘
𝑦′

𝜇
 𝑀1

𝜕

𝜕𝑥′ 𝐻𝑦′ + 𝑀2
𝜕

𝜕𝑦′ 𝐻𝑦′                                               4.9  

 where 𝑘𝑥′ is the constant permeability and 𝑝 ′ is the pressure in the porous region.The 

permeability of cartilage depends on the volume occupied by the fluid and the activities 

of its proteoglycan macromolecules. The permeability of the articular cartilage matrix 

can be modelled for the plane- isotropic medium so that it varies with position and 

deformation.  The experiments of Maroudas (1969) confirmed that permeability 𝑘𝑦′  

decreases with depth. We therefore introduce 
𝑘𝑦′  = 𝑘0 1 − 𝛽𝑦′                                                                                                      4.10  

 where 𝑘0 is a constant permeability at the surface which depend on the concentration 

of the collagen and does not consist of proteoglycan (the component is assumed 

significantly effects the change in the permeability)  52 



Axial Velocity and Pressure in porous region: 

𝑢0 =
𝑅𝑒ℎ′

0

2
𝑦2 − ℎ2 𝜕𝑝0

𝜕𝑥
− 𝜎1𝑅𝑒ℎ′

0ℎ
𝜕𝑝0

𝜕𝑥
−

𝑘0𝑅𝑒𝜕𝑝𝛩

𝜕𝑥
 

𝑦=ℎ
                                  (4.34) 

𝑢1 =
1

2
 𝑅𝑒ℎ′

0 𝑦2 − ℎ2 − 2𝜎1ℎ
𝜕𝑝1

∗

𝜕𝑥
  +  

1

4
𝜀𝑅𝑒3ℎ′0 𝑦4 − ℎ4 − 4𝜎1ℎ

3 𝜕𝑝0
∗

𝜕𝑥
      (4.35) 

We have obtained the hydrostatic pressure  𝑝𝜃 in the porous region as below: 

𝑝𝜃

=  𝐶𝑛𝑐𝑜𝑠 (2𝑛 + 1)
𝜋

2
𝑥

−𝐾′
0

2𝜆𝑛ℎ′
0 1−𝛽′ℎ−𝛽′𝐻

𝛽′

𝐼′0
2𝜆𝑛ℎ′

0 1−𝛽′ℎ−𝛽′𝐻

𝛽′

 𝐼0 
2𝜆𝑛ℎ′

0 1−𝛽′𝑦

𝛽′ +  𝐾0
2𝜆𝑛ℎ′

0 1−𝛽′𝑦

𝛽′
∞
𝑛=0                                                 

where 𝐾′0 , 𝐼′0  denotes the derivatives of  modified Bessel’s functions. 
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Solution of the problem: 

𝑃∗ =  
2

𝑅𝑒ℎ′0 𝑦2 − ℎ2 − 2𝜎1ℎ
     

𝑘0𝑅𝑒

𝓁
  𝑃𝑎𝑡  𝑦=𝐻

𝛩 +
𝑉0

ℎℎ′0
 𝐶𝑛

cos 𝜆𝑛𝑥

𝜆𝑛
2   𝐹1 ℎ + 𝑥2 − 1

𝑉0

2ℎℎ′0
         

       +  𝐺 𝑦 𝐺1 𝑦 3    

  

𝐶𝑛 =
4𝐺3 ℎ sin 𝜆𝑛

𝜆𝑛
4 2𝐺1 ℎ

𝑘0𝑅𝑒
𝓁

∅1 ℎ +
𝑉0

ℎℎ′0
 
𝐹1 ℎ
𝜆𝑛
2  ∅1 ℎ

 

  

where, 𝐹1 ℎ = −𝑘 1 −
𝐷

𝐸

𝜌𝑣0

ℎ0
𝛹 ℎ,𝐻 𝐼′0

2𝜆ℎ′
0 1 − 𝛽′ℎ

𝛽′
+ 𝐾′

0

2𝜆𝑛ℎ
′
0 1 − 𝛽′ℎ −

1
2

𝛽′
  × 

                                                                                    𝜆𝑛ℎ
′
0 1 − 𝛽′ℎ −

1

2 (−1)𝑘′0

2𝜆𝑛ℎ′0 1−𝛽′ℎ−𝛽′𝐻

𝛽′

𝐼′0
2𝜆𝑛ℎ′0 1−𝛽′ℎ−𝛽′𝐻

𝛽′
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Load Carrying Capacity: 

  

𝑊 =   2𝐺1 𝑦
𝑘0𝑅𝑒

𝓁
  𝐶𝑛

sin 𝜆𝑛

𝜆𝑛
 ∅1 ℎ  + 

𝑉0

ℎℎ′0
  𝐶𝑛  

sin 𝜆𝑛

𝜆𝑛
3  𝐹1 ℎ − 

1

3
 
𝑉0

ℎℎ′0

+ 𝐺1 𝑦 3 

 
1

20
 

𝑉0

ℎℎ′
0

3

+    3
𝑉0

ℎℎ′
0

2

 
𝐶𝑛

𝜆𝑛
  

sin 𝜆𝑛

𝜆𝑛
 

−
2

𝜆𝑛
3  sin 𝜆𝑛  −  6

𝑉0

ℎℎ′
0

2

 
𝐶𝑛

𝜆𝑛
4  sin 𝜆𝑛𝑅1 ℎ  

−  6
𝑉0

ℎℎ′
0

2

  
𝐶𝑛

𝜆𝑛
4  sin 𝜆𝑛𝑅1 ℎ  + 

1

3
𝜇1 𝜇′0 𝜇′   
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Fig. 4.2:     Variation of non-dimensional pressure disribution with  

                    axial distance for different values of  articular gap h 
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Fig. 4.3 :  Variation of non-dimensional pressure disribution with   

axial distance for different values of  External magnetic field〖 𝑯〗_𝒆 
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Fig. 4.4:   Variation of non-dimensional  load capacity with articular  

                 gap h  for different values of  external magnetic field 𝑯_𝒆 
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     Fig. 4.5 : Variation of non-dimensional load capacity with intra articular  

                       gap (h) for  different values of the viscoelastic parameter "𝜀 " 
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Transient Solute Dispersion 
 VISCOELASTIC EFFECTS ON THE UNSTEADY CONVECTIVE 

DIFFUSION IN A SYNOVIAL FLUID OF HUMAN JOINTS 
 

a generalized dispersion model is used to obtain solution for unsteady convective 

diffusion in a synovial fluid of human joints. In this paper, synovial fluid is 

represented by viscoelastic fluid. Analytically, the problem is formulated as a two 

region namely diffusion and flow model. Flow and diffusion in the fluid film 

between approaching cartilage surfaces and within the porous cartilages. The non-

linear momentum equations in a fluid film region have been solved by perturbation 

technique. The solution of diffusion equation in fluid film region with boundary 

conditions has been obtained by using the method of Gill & SankaraSubramanian. 

It has been observed that increase in viscoelastic parameter decreases the ratio of 

axial velocity and average axial velocity. 
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It is also observed that the axial velocity decreases with increase in intra-articular gap. 

It has been observed that mean concentration distribution increases with increase in the 

viscoelastic parameter. It has also been noted that mean concentration decreases with 

increase in time and axial distance. The results are also obtained for diffusion 

coefficients versus time. It has been observed that when time increases then diffusion 

coefficient increases. It should also be noted that when viscoelastic parameter increases 

then diffusion coefficients decreases 

 

    Introduction: 

The unsteady convective diffusion, occurring in normal synovial fluid contributes 

significantly to the generalized dispersion of nutrients. Considerable amount of 

theoretical and experimental work has been done on dispersion in Newtonian fluids by 

Taylor (1953). Aris (1956) removes the restrictions imposed on some of the parameters 

at the expense of the distribution of solute in terms of its moments in the direction of 

flow. 
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Introduction: VISCOELASTIC EFFECTS ON THE UNSTEADY 
CONVECTIVE……. 

 Fan et al. (1966) have considered the dispersion of a solute accompanying the flow 

of the Ostwald-de-Waele fluid. Chandra et al (1983) studied the dispersion of a 

solute matter in simple micro fluids flowing through channel and pipe under 

Taylor’s limiting conditions. 

 

 There is no previous analytical work on dispersion of nutrients in the synovial fluid 

represented as viscoelastic fluid at least to our knowledge. Rudraiah et al (1991) has 

considered the synovial fluid as power law fluid. But the properties of SF are 

resembled with viscoelastic fluid for which the parameters have also been obtained 

for normal and pathological S.F [Lai et al (1978)]. 

 

 This promotes us to represent synovial fluid as viscoelastic fluid. In addition to this, 

some investigators have proposed that there also exists an intrinsic flow 

independent viscoelasticity in the solid matrix [Hayes (1978) Mak et al (1986), 

Setton et al (1993), Suh et al (1999)]. 
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Introduction: VISCOELASTIC EFFECTS ON THE UNSTEADY 
CONVECTIVE……. 

 Therefore, in this chapter, considering the articular cartilage as a 

mixture of two interacting continua, We have proposed more realistic 

model for better understanding of the transport of nutrients from 

synovial fluid to articular cartilage based on the dispersion mechanism 

of Taylor [(1953), Gill (1967) and Aris (1956)].  

 

 The velocities present in fluid film region as well as in cartilages are 

obtained using perturbation technique.  

 

 The dispersion coefficients are determined from the diffusion equation 

using the generalized theory. 
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Formulation of the Problem: 

Equation of Motion: 

 −
𝜕𝑝′

𝜕𝑥′ + 𝜂0
𝜕

𝜕𝑦′

𝜕𝑢′

𝜕𝑦′ − 𝜀0
𝜕𝑢′

𝑎𝑦′

3

= 0                                         (6.1) a 

−
𝜕𝑝′

𝜕𝑦′ = 0                                            (6.1) b 

Equation of Continuity: 

  
𝜕𝑢′

𝜕𝑥′ +
𝜕𝑣′

𝜕𝑦′ = 0                       (6.2) 
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Boundary and matching conditions: 

𝜕𝑢′

𝜕𝑦′ = 0      𝑎𝑡 𝑦′ = 0 

𝑢′ = 𝑢′ − 𝜎′ 𝜕𝑢′

𝜕𝑦′     𝑎𝑡 𝑦′ = ℎ′ 

𝑣′ = 0      𝑎𝑡 𝑦′ = 0 

𝑣′ = −
𝑑ℎ′

𝑑𝑡′
−

𝑘

𝜂0 

𝜕𝑝′

𝜕𝑥′    at 𝑦′ = ℎ′       (6.4) 

𝜕𝑝′

𝜕𝑥′ 
 𝑎𝑛𝑑 

𝜕𝑝′

𝜕𝑥′ = 0     𝑎𝑡 𝑥′ = 0 

𝑝′𝑎𝑛𝑑 𝑝′ = 0                                                            𝑎𝑡 𝑥′ = ±𝑙′ 

𝑝′ = 𝑝′                                    𝑎𝑡 𝑦′ = ℎ′                                                 
𝜕𝑝′

𝜕𝑦′ = 0      𝑎𝑡 𝑦′ = ℎ′ + 𝐻′  

 Non dimensional scheme: 

𝑥 =
𝑥′

𝑙′
,                  𝑦 =

𝑦′

ℎ0
      ,          𝑢 =

𝑢′

𝑣0
         ,           𝑐 =

𝑐′

𝑐0
  

𝑣 =
𝑣′

𝑣0
,                ℎ =

ℎ′

ℎ0
,                      𝑡 =

ℎ0𝑡
′

𝑣0
             𝑝 =

𝑝′

𝜌𝑣0
2   ,          𝑙 =

𝑙′

ℎ0
   

𝑝𝑒 =
𝑣0ℎ0

𝐷
,    𝐷 =  

𝐷′

𝐷0
 𝑅𝑒 =

𝜌𝑣0ℎ0

𝜂0 
 ,        𝜎 =

𝜎′

ℎ0
 ,                       𝜀 =

𝜀0𝑣0
2

ℎ0
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DISPERSION SOLUTION: 

 

  

The cartilage layer is assumed to be uniform and homogeneous. The solute 

concentration at any time t is given by diffusion equations: 

  

𝜕𝐶′

𝜕𝑡′
+ 𝑢′ − 𝑢 ′

𝜕𝐶′

𝜕𝑥′ = 𝐷′
𝜕2𝐶′

𝜕𝑥′ +
𝜕2𝐶′

𝜕𝑦′2
 

subject to initial conditions. 

  

𝐶′ 0, 𝑥, 𝑦 =  
𝐶0                 𝑥′  ≤ 𝑙′

0                  𝑥′ ≥ 𝑙′
 

Boundary Condition: 
𝜕𝐶′

𝜕𝑦′
= 0                    𝑎𝑡 𝑦′ =  𝐻′ ± ℎ′ 
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Dispersion Equation in non-dimensional form 

The dimensionless form of Eqn. (6.15- 6.17)  

  

𝜕𝐶

𝜕𝑡
+ 𝑎1𝑢

∗ 𝜕𝐶

𝜕𝑥
=

1

𝑎2
2 𝑏1

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2                                              (6.18) 

  

where, 𝑢∗= 𝑢 − 𝑢 ,  𝑏1 =
𝑈0

2

ℎ0𝑙′
  ,

1

𝑎2
2 =

𝑈0𝐷0

ℎ0
3     

  

  

𝐶 0, 𝑥, 𝑦, =  
1                   𝑥  ≤ 1
0                  𝑥 ≥ 1

                                                            (6.19) 

𝜕𝐶

𝜕𝑦
= 0  at  𝑦 = 𝐻 ± ℎ                                                                   (6.20) 
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Analysis: 

𝐶 = 𝐶𝑚 𝑡, 𝑥 +  𝑓𝑘(𝑡, 𝑦)
𝜕𝑘𝐶𝑚

𝜕𝑥𝑘
∞
𝑘=1                                                      (6.21) 

𝐶𝑚 𝑡, 𝑥 =
1

2ℎ
 𝐶 𝑑𝑦
ℎ

−ℎ
                                                      (6.22) 

 

It will see presently that fk (t, y) functions must depend on t in order to satisfy the zero 

wall gradient boundary condition for the fk(t, y) with k ≥3. It is perhaps less important 

but nevertheless worth noting that the t dependence of fk(t, y) also enables one to 

satisfy the conditions 𝐶 0, 𝑥, 𝑦 = 0 
𝜕𝐶𝑚

𝜕𝑡
+ 𝑎1𝑢

∗
𝜕𝐶𝑚

𝜕𝑥
−

𝑏1

𝑎2
2

𝜕2𝐶𝑚

𝜕𝑥2  

   + 
𝜕𝑓𝑘

𝜕𝑡
−

1

𝑎2
2

𝜕2𝑓𝑘

𝜕𝑦2

𝜕2𝐶𝑚

𝜕𝑥𝑘 + 𝑎1𝑢
∗𝑓𝑘

𝜕𝑘+1𝐶𝑚

𝜕𝑥𝑘+1 − 𝑓𝑘𝑎2
  −2 𝜕𝑘+2𝐶𝑚

𝜕𝑥𝑘+2 𝑓𝑘 +
𝜕𝑘+1𝐶𝑚

𝜕𝑡𝜕𝑥𝑘
∞
𝑘=1 = 0  
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Dispersion Solution: 

𝜕𝐶𝑚

𝜕𝑡
=  𝐾𝑖(𝑡)

∞

𝑖=1

𝜕2𝐶𝑚

𝜕𝑥2
 

𝐶𝑚 0, 𝑥  =      
1                   𝑥  ≤ 1
0                    𝑥   > 1

                                    (6.25) 

𝐶𝑚 𝑡,∞ = 0 

 

 
𝜕𝑓1
𝜕𝑡

−
𝑏1

𝑎2
2

𝜕2𝑓1
𝜕𝑦2 + 𝐾1 𝑡 + 𝑎1𝑢

∗
𝜕𝐶𝑚

𝜕𝑥

+  
𝜕𝑓𝑘+2

𝜕𝑡
−

1

𝑎2
2

𝜕2𝑓𝑘+2

𝜕𝑦2 + 𝑎1𝑢
∗𝑓𝑘+1 + 𝐾1 𝑡 𝑓𝑘+1

∞

𝑘=𝑙

𝜕𝑘+2𝐶𝑚

𝜕𝑥𝑘+2

+  𝐾1 𝑡 − 𝑎2
 −2 𝑓𝑘 +  𝐾𝑖(𝑡)𝑓𝑘+2−𝑖

𝑘+2

𝑖=3

∞

𝑘=1

𝜕𝑘+2𝐶𝑚

𝜕𝑥𝑘+2  = 0  

Taking 𝑓0 = 1  
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Dispersion Solution: 

𝜕𝑓1

𝜕𝑡
=

𝑏1

𝑎2
2

𝜕2𝑓1

𝜕𝑦2 − 𝐾1 𝑡 − 𝑎1𝑢
∗                               (6.28) 

  

𝜕𝑓2

𝜕𝑡
=

𝑏1

𝑎2
2

𝜕2𝑓2

𝜕𝑦2 − 𝑎1𝑢
∗𝑓1 + 𝐾2 𝑡 − 𝑓1𝐾1 𝑡 + 𝑎2

 −2                             (6.29) 

  

𝜕𝑓𝑘+2

𝜕𝑡
=

1

𝑎2
2

𝜕2𝑓𝑘+2

𝜕𝑦2 − 𝑎1𝑢
∗𝑓𝑘+1 − 𝐾1 𝑡 𝑓𝑘+1 − 𝐾2 𝑡 − 𝑎2

 −2 𝑓𝑘 −  𝐾𝑖 𝑡 𝑓𝑘+2−𝑖
𝑘+2
𝑖=3          

        (6.30) 

  

𝑓𝑘 0, 𝑦 = 0 and                                                      
𝜕𝑓𝑘

𝜕𝑦
𝑡, 1 = 0 =

𝜕𝑓𝑘

𝜕𝑦
𝑡, −1       (6.31) 

 𝑓𝑘𝑑𝑦 = 0       𝑘 = 1, 2, 3……………………
ℎ

−ℎ
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Dispersion Coefficients: 

𝐾1 𝑡 = 0 

 
𝐾2 𝑡
= −𝑎2

 −2  

+
𝑎1

ℎ

𝑎2
  2𝑎1

𝑏1

2(𝑎3 + 𝜀𝑎5)

45

𝑎3 + 𝜀𝑎5

7

2𝜀𝑎6ℎ
6

9
ℎ7  

𝐵𝑖𝐶𝑜𝑠𝑚𝑖𝑎2ℎ

𝑚𝑖
 2𝑎2

2  + 4 𝐵𝑖

1

𝑚𝑖
2𝑎2

2  ℎ2

∞

𝑖=1

∞

𝑖=1

−
6ℎ

𝑚𝑖
2𝑎2

  2 𝐶𝑜𝑠 𝑚2𝑎2ℎ 𝑒
−2𝑚𝑖𝑡 

 

 𝐾𝑖 𝑡 , (𝑖 > 2) are negligible small compared with 𝐾2 𝑡   
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Mean Concentration Distribution: 

𝐶𝑚 =
1

2
𝑒𝑟𝑓

1−𝑥

𝑇
2 + 𝑒𝑟𝑓

1−𝑥

𝑇
2   

  

where,  𝑇 =  𝐾2(𝑧)𝑑𝑧
𝑡

0
 

𝑇
= −𝑎2

  −2𝑡

+ 𝑎1 𝑎9𝑊 + 4𝜀𝑎6 ℎ  𝐵𝑖
1

𝑚𝑖
  2𝑎2

2 ℎ2 −
6ℎ

𝑚𝑖
   2𝑎2

   2
∞
𝑖=1

𝐶𝑜𝑠 𝑚𝑖𝑎2ℎ

𝑚𝑖
   2 1 − 𝑒−2𝑚𝑖𝑡      

  
𝑤ℎ𝑒𝑟𝑒, 
 
 𝑊

= −
𝑎2
−2𝑎1

𝑏1

2(𝑎3+𝜀𝑎5)

45

(𝑎3+𝜀𝑎5)

7
+

2𝜀𝑎6ℎ
2

7
ℎ5

+ 2 𝑎3 + 𝜀𝑎5 ℎ 
𝐶𝑜𝑠 𝑚𝑖𝑎2ℎ

𝑚𝑖
   2𝑎2

  2
∞
𝑖=1   
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Fig. 6.2: Variation of  𝒖∕𝒖    and intraarticular gap (h) for 

               different  values of viscoelastic parameter  (𝜺) 

  

 ε =0.1 
 

 x =0.5, y=0.261, σ = 0.2 



74 

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.01 0.26 0.51 0.76 1.01

X = .5 
Y = .011 
h = .25 
σ = .2 
 

ε =0.4 
 

ε =0.3 
 

ε =0.2 
 

ε =0.1 
 

Fig. 6.3: Variation of 𝑲_𝟐 (𝒕) and time t  for different values of   

               viscoelastic parameter 

𝑲
_𝟐

 (
𝒕)

×
〖𝟏
𝟎
〗^
𝟑

 

t 



75 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1.00 2.00 3.00 4.00

Time  t  → 

Fig. 6.4: Variation of mean concentration distribution with 

                  time t for different values of viscoelastic parameter 

X = .5 
Y = .011 
h = .25 
σ = .2 

ε =0.4 

ε =0.3 

ε =0.2 
 

ε =0.1 
 

M
ea

n
 C

o
n

ce
n

tr
a
ti

o
n

 〖
(𝑪

〗_
𝒎

×
〖𝟏
𝟎
〗^
𝟒

) 



76 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

0.2 0.4 0.6 0.8 1

σ = 0.2 
Y = .011 
H = .25 
T = 1.01 
 

ε =0.4 
 ε =0.3 

 ε =0.2 
 ε =0.1 

 

M
ea

n
 C

o
n

ce
n

tr
a
ti

o
n

 〖
(𝑪

〗_
𝒎

×
〖𝟏
𝟎
〗^
𝟖

) 

Axial distance (X)  

Fig. 6.5: Variation of mean concentration disrtibution with axial  

               distance (x) for different values of viscoelastic parameter. 



 

CONCLUSIONS: 

 In this study the dispersion coefficients and mean concentration distribution of 
synovia fluid flow in the fluid film gap of articular cartilages under the action of 
various values of viscoelastic parameter of normal and diseased values is studied.  

 

 It has been obtained computationally that value of the axial velocity (𝑢 𝑢  ) decrease 
as the viscoelastic parameter increases.  

 

 The dispersion coefficients increase as the increase value of the viscoelastic 
parameter. It may conclude that the viscoelastic parameter effectively increase the 
transport of hyaluronic acid molecules and other protein required for the survival of 
the cartilage.  

 

 It seen that mean concentration distribution decreases with increase in the time and 
axial distance the cells of middle area get more nutritional as compared to the 
peripheral area. It helps to orthopaedic surgeons to check by the formula of 
dispersion mechanism whether the joints functioning effectively or not. 
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A MODEL FOR INTRA ARTICULAR HEAT EXCHANGE IN A 
KNEE JOINT 

 
 

A simplified mathematical model has been developed for the understanding 

temperature distribution in knee joint. Temperature rise in knee joint as a result of 

frictional energy. This heated synovial fluid enters into the articular cartilage by the 

process of filtration and supplies heat to cartilage and bone. This cooled fluid again 

mixes well with the lubricant in the joint cavity. The problem is formulated as a two 

region flow and diffusion model: flow and thermal diffusion within the intra-articular 

gal; and within the porous matrix covering the approaching bones at the joint. The 

solution of the coupled mixed boundary value problem is solved by using perturbation 

method. It has been observed that, in certain diseased and or old synovial joints, the 

movement of the fluid into or out of the cartilage resisted and therefore the temperature 

does rise. The temperature does rise in old and diseased joints as observed by varying 

the values of parameters from its normal values. These values refer to old age and/or 

diseases affecting degeneration of synovial fluid and or cartilage 
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Introduction: 

 Friction occurs in all types of joints, both in natural and artificial. The heat 

generation and dissipation is a process that takes place every time the joint is used. 

Another factor important for frictional heat generation is the lubrication in natural 

joints; it is accomplished by means of the synovial fluid, probably liquid crystalline 

biological substances [Szwajczak et al 2001]. In normal human hip joints, the 

temperature elevation measured is of order of +2.50C during walking and probable 

more during running.  

 The viscous dissipation under strain is generally related to the friction arising from 

three different interactions: 

 A friction caused by the interactions of single Hyaluronic acid [HA] molecules with 

the medium (solvent and other solutes) and by the hydrodynamic interactions 

among the flow fields of chain segments of single HA molecules. This behaviour is 

typical of dilute polymeric solutions. [Maroudas et al 1967] 

 A friction arising among intermolecular contacts during chain slipping. 

 A friction connected with the formation of entanglements when, in concentrated 

solutions, the polymer molecular weight exceeds the critical value. [ McCutchen et 

al 1962] 
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Introduction:… 

 Until now there is very small analytical attempt has been done in this direction 

[Mukherjee et al (1980), Tandon et al (1983, 1997)]. Bali et al (2003) considered 

the equation of energy in terms of the transport properties in which the effect of 

fluid velocity in energy transfer is very small and they also considered that at line of 

symmetry the temperature is zero.  

 In this chapter, an attempt has been made to present more realistic analysis by 

considering that the temperature in the fluid film region is distributed symmetrically 

and at the bony end the temperature is constant.  

 We have developed in this chapter a mathematical model for the temperature 

regulation in squeezing flow of synovial fluid in between the approaching 

poroelastic cartilaginous surfaces and flow of suspending medium of the lubricant 

within the intra-articular gap. The synovial fluid has been represented by 

viscoelastic fluid. The solution to the model is obtained by perturbation method and 

results have been discussed with the available experimental observations.  
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FORMULATION OF THE PROBLEM 

 

Fig. 7.1 represents geometrical counterpart of the normal knee joint for the model 

proposed in this chapter. In order to formulate a mathematical tractable problem, we 

introduce the following admissible assumptions: 

 Articular cartilage behaves strictly as elastic. 

 Body forces and diffusional couples do not exist. 

 The solid and fluid phases are isotropic, homogeneous and incompressible. 

 The ratio of solidity to fluidity (v) is constant. 

 The effect of viscosity of interstitial fluid is negligible except where it implicity 

contributes to the diffusional drag. 

 Owing to small transients during articulation, inertial forces are negligible.              

 Under these assumptions, the governing differential equations of continuity, 

momentum for the cartilage matrix and in the fluid film region are given below 

separately: 
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Porous cartilage – matrix: 

− 𝒉′ + 𝑯′ ≤ 𝒚′ ≤ −𝒉′  𝒂𝒏𝒅 𝒉′ ≤ 𝒚′ ≤ (𝒉′ + 𝑯′) 

 The governing equation for the pressure distribution within the cartilage. 

 

  𝛻. 𝑘′𝛻𝑝′ = 0 

 

 The permeability of the porous matrix, due to the normal body weight during 

prolonged standing or jumping, decreases with y-coordinate 𝑘 = 𝑘0 1 − 𝛽𝑦′  i.e. in 

the tissue region. 

 The pressure distribution within the porous matrix 𝑝 (𝑥′, 𝑦′) is given by the 

equation  

 
𝜕2𝑝′

𝜕𝑥′2
+

𝜕

𝜕𝑦′
𝑘0(1 − 𝛽𝑦′)

𝜕𝑝′

𝜕𝑦′
= 0  
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INTRA-ARTICULAR HEAT EXCHANGE: 

 We introduced the following assumptions: 

 

 It is assumed that there is no internal heat transfer phenomena from inside or 

outside or vice versa i.e. 𝑄 = 0, where 𝑄  is rate of heat transfer. 

 Energy flux (q) and viscous stress (𝜏) are taken in terms of temperature gradient and 

velocity gradient respectively. 

 The temperature is time independent in both the regions. 

 The equation of energy in terms of the fluid temperature T for the 

biomechanical system [Bird et al (2007)] 

 𝜌𝐶𝑣
𝐷𝑇

𝐷𝑡
= − 𝛻. 𝑞 − 𝑇

𝜕𝑝

𝜕𝑇 𝑉
𝛻. 𝑣 − (𝜏: 𝛻𝑣)               (7.8) a 

𝜏: 𝛻𝑣 = −𝜇0𝜑𝑣           (7.8) b 

  

The above equation states that the temperature of a moving synovial fluid element 

changes because of (a) heat conduction, (b) expansion effect, and (c) viscous heating. 

The quantity 𝜑𝑣 is known as the dissipation function. In this model we have consider 

that the model is free from the expansion effect.  
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INTRA-ARTICULAR HEAT EXCHANGE: 

The governing energy equation may be written for the two regions separately as given 

below;  

𝜌𝑐𝑣𝑢
′ 𝜕𝑇′

𝜕𝑥′ = 𝐾
𝜕2𝑇′

𝜕𝑥′2 + 
𝜕2𝑇′

𝜕𝑦′2 + 2𝜇0
𝜕𝑢′

𝜕𝑥′

2

+ 𝜇0
𝜕𝑢′

𝜕𝑥′

2

                                     (7.9) a 

  

𝜌𝑐𝑣  𝑢′ 
𝜕𝑇 ′

𝜕𝑥′ + 𝑣′ 
𝜕𝑇 ′

𝜕𝑦′ = 𝐾
𝜕2𝑇′

𝜕𝑥′2
+

𝜕2𝑇′

𝜕𝑦′2
+ 2𝜇0  

𝜕𝑢 ′

𝜕𝑥′

2

+ 
1

(ℎ1)
2

𝜕𝑣 ′

𝜕𝑦′

2

+   

                                                   𝜇0
𝜕𝑢 ′

𝜕𝑦′ +
𝜕𝑣 ′

𝜕𝑥′

2

        (7.9) b   

  The terms contained in the braces { } are associated with viscous dissipation and 

small velocity gradients. Where 𝑇′ and 𝑇′  are the temperatures in fluid film and 

cartilage matrix respectively, K is the thermal conductivity, ρ is the density and cv is 

the specific heat at constant volume and 𝜇0 is the constant values of the parameter 

referring to corresponding physical quantities for the suspending medium without 

hyaluronic acid molecules. 
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Boundary and Matching Conditions: 

Conditions for the above equations: 

 

 𝑇’ 0, 𝑦 =  𝑇’ 𝑙, 𝑦 ,      𝑇′(0, 𝑦) =  𝑇′(𝑙, 𝑦)                                         (7.10)    

𝜕𝑇′

𝜕𝑦′
= 0       𝑎𝑡 𝑦′ = 0                                                                              (7.11) 

𝑇 𝑥, 𝑦 = 𝑇0                  𝑎𝑡  𝑦
′ = ℎ′ + 𝐻′                                                   (7.12)       

 Continuity of the heat flux at the cartilage interface is given by 

  

 𝐷1
𝜕𝑇′

𝜕𝑦′ = 𝛼′
𝜕𝑇′

𝜕𝑦′′
              𝑎𝑡   𝑦′ = ℎ′                                                         (7.13) 

 

 In addition to the condition (7.10) - (7.13) a condition is required at lubricant- cartilage 

interface. This is introduced by extrapolating the temperature distribution in the bulk of 

the porous medium. This is known as temperature- slip boundary condition: 

𝜕𝑇′

𝜕𝑦′
= −

𝛼′

𝜐
𝑇′ − 𝑇′                         𝑎𝑡 𝑦′ = ℎ′                                                         7.14  

 where 𝛼′ is the slip temperature parameter and 𝜐 is the pore length scale parameter.  
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Boundary and Matching Conditions: 

Governing equations for flow in both the regions: 

  
𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒ℎ0
 
𝜕

𝜕𝑦
 

𝜕𝑢

𝜕𝑦
− 𝜀

𝜕𝑢

𝜕𝑦

3
= 0                                                  (7.17) 

 
𝜕𝑝

𝜕𝑦
= 0                                                                                              (7.18) 

ℎ0′ 
𝜕2𝑝

𝜕𝑥2 +
𝜕

𝜕𝑦
 1 − 𝛽′𝑦

𝜕𝑝

𝜕𝑦
 = 0                                                      (7.19) 

Boundary and matching conditions in non-dimensional form can be written as: 

𝜕𝑢

𝜕𝑦
= 0                                                              at y = 0 

𝑢 = −
𝑘0𝑅𝑒

𝓁
 
𝜕𝑝

𝜕𝑥
− 𝜎1

𝜕𝑢

𝜕𝑦
                                     at y = h 

𝜕𝑝

𝜕𝑥
 𝑎𝑛𝑑 

𝜕𝑝 

𝜕𝑥
= 0                                                at x = 0 

𝑝  𝑎𝑛𝑑  𝑝 = 0                                                  at x = ±1 

𝑝 = 𝑝                                                                at y  = h 

𝜕𝑝 

𝜕𝑦
= 0                                                             at  y = h + H 
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Non-dimensional form of the Temperature Equation:    

Equations for temperature distribution in non-dimensional form: 
  

Re Pr𝑢
𝜕𝑇

𝜕𝑥
=

𝜕2𝑇

𝜕𝑥2 + 
1

ℎ12
 
𝜕2𝑇

𝜕𝑦2 + 2𝜇𝐵𝑟
𝜕𝑢

𝜕𝑥

2
+ 

1

ℎ12
 𝐵𝑟

𝜕𝑢

𝜕𝑦

2
                      (7.20)  

  

RePr 𝑢 
𝜕𝑇 

𝜕𝑥
+

𝑣 

ℎ1
 
𝜕𝑇 

𝜕𝑦
 =

𝜕2𝑇 

𝜕𝑥2  +
1

ℎ12
 
𝜕2𝑇 

𝜕𝑦2 +  2𝜇𝐵𝑟
𝜕𝑢 

𝜕𝑥

2
+

1

ℎ12
 

𝜕𝑣 

𝜕𝑦

2
 

                                                           + 𝜇𝐵𝑟
𝜕𝑢 

𝜕𝑦
+

𝜕𝑣 

𝜕𝑥

2
                                   (7.21) 

  
The boundary and matching conditions in non-dimensional form: 
  
T (0, y) = T (1, y) 
 𝑇 0, 𝑦   =  𝑇 1, 𝑦  

 
𝜕𝑇

𝜕𝑦
= 0       𝑎𝑡  𝑦 = 0                                                                                        (7.22) 

 𝑇 𝑥, 𝑦 = 1    𝑎𝑡  𝑦 = ℎ + 𝐻 
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SOLUTION OF THE PROBLEM: 

 
𝑝 =  𝐶𝑛 cos 𝜆𝑛𝑥 𝛹 ℎ,𝐻 𝐼0

2𝜆𝑛ℎ0
′ 1−𝛽′𝑦

𝛽′ + 𝐾0
2𝜆𝑛ℎ0

′ 1−𝛽′𝑦

𝛽′
∞
𝑛=0                (7.23) 

 where; 

 𝛹 ℎ, 𝐻 = −
𝐾0

′ 2𝜆𝑛ℎ0
′  1−𝛽′ℎ−𝛽′𝐻  / 𝛽′

𝐼0
′ 2𝜆ℎ0

′ 1−𝛽′ℎ−𝛽′𝐻  / 𝛽′ 
 

𝐶𝑛 =
4𝑣0 −1 𝑛

𝑅𝑒ℎ0
′ℎ𝜎1𝜆𝑛

3 −𝑘0𝑅𝑒

𝑙
∅1 ℎ +

𝑣0
ℎℎ0𝜆𝑛

2𝐹1 ℎ
1

𝑅𝑒ℎ0
′ ℎ𝜎1

−∅1 ℎ

   (7.24) 

∅1 ℎ = −𝐾0
′

2𝜆𝑛ℎ0
′  1 − 𝛽′ℎ − 𝛽′𝐻

2𝜆ℎ0
′ 1 − 𝛽′ℎ − 𝛽′𝐻  / 𝛽′  

 𝐼0
2𝜆𝑛ℎ0

′ 1 − 𝛽′ℎ

𝛽′

+ 𝐾0

2𝜆𝑛ℎ0
′ 1 − 𝛽′ℎ

𝛽′
 

  

𝜆𝑛 = 2𝑛 + 1
𝜋

2
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Solution… 

Finally we have temperature in fluid region as: 

  

𝑇 = 𝑇0 + 𝑔0 𝑦 + 𝑅𝑒𝑔1 𝑦 + 𝑥2𝑞0 𝑦 + 𝑅𝑒𝑥2𝑞1(𝑦)                                 (7.32)a 

      

and in cartilage region the temperature is obtained as: 

  

 𝑇 = 𝑇 𝑜 + 𝑅𝑜 𝑦 + 𝑅𝑒 𝑅1 𝑦 + 𝑥2𝑆𝑜 𝑦 + 𝑅𝑒𝑥
2𝑆1(𝑦)                         (7.32)b 

 

 
𝜕𝑇

𝜕𝑦
= 0      𝑎𝑡  𝑦 = 0  

𝑔′0 0 = 𝑔′1 0 = 0                                                                                        (7.33) 

𝑞′0 0 = 𝑞′1 0 = 0                                                                                         (7.34) 
𝑅𝑒𝑃𝑟 𝑧1𝑦

2 + 4𝑧2𝑥 2𝑥 𝑞0 + 𝑅𝑒𝑞1 𝑦
=     𝑞0 + 𝑅𝑒𝑞1 𝑦

+    
1

ℎ1
2  𝑥2𝑞"0 𝑦 + 𝑅𝑒𝑞"1 𝑦 + 𝑔"0 𝑦 +  𝑅𝑒𝑔"1 𝑦  
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Fig. 7.2: Temperature Distribution in articular cartilage 𝑻    for  

                different values of the  permeability parameter (𝜷) 
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Fig. 7.3: Temperature Distribution in articular cartilage 𝑻    for  

               different intra articular gap (h) 
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Fig. 7.4: Temperature Distribution in articular cartilage 𝑻    for  

               different values of the viscoelastic parameter (𝜺) 
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     Fig. 7.5: Temperature Distribution in articular cartilage 𝑻    for  

                    different values of the  slip parameter 𝛼′ 
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Conclusions: 

 This chapter presents a more realistic model for discussing temperature distribution 

in human and may be used for predicting temperature variation in artificial joint.  

 

 Temperature rises, resulting even if they are not significant, make the synovial fluid 

less viscous. As described above, overall temperature rise estimated was no more 

than 1.5℃ and there would exist some locally enhanced temperature gradients.  

 

 We may prepare model for artificial joints also where temperature enhancement is a 

major problem. 
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CONCLUSIONS 

 The objective of the research work is to construct mathematical models for 

synovial joints as a two region mixed boundary value problem involving 

lubrication, diffusion and energy transfer.  

      

 

 The load carrying capacity increases when the viscoelastic parameter 

increases. The increasing value of the viscoelastic parameter describe the 

increase in the concentration of the suspended hyaluronic acid molecules 

which increases overall viscosity of the lubricant this helps in sustaining 

greater loads. 

 In diseased states when the viscosity of the synovial fluid is lowered, the 

applied magnetic field can help in normal articulation by increasing the 

pressure in the intra-articular gap  
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Conclusions: 

 The applied magnetic field increases the load carrying capacity. The 
applied magnetic field increases the load carrying capacity. This helps in 
sustaining greater loads. 

 The axial velocity decreases with increase in intra-articular gap. The mean 
concentration distribution increases with increase in the viscoelastic 
parameter. It has also been noted that mean concentration decreases with 
increase in time and axial distance.  

 It has been observed that when time increases then diffusion coefficient 
increases. It should also be noted that when viscoelastic parameter 
increases then diffusion coefficients decreases. It may be concluded that the 
viscoelastic parameter effectively increase the transport of hyaluronic acid 
molecules and other protein required for the survival of the cartilage. It 
seen that mean concentration distribution decreases with increase in the 
time and axial distance the cells of middle area get more nutritional as 
compared to the peripheral area. It helps to orthopaedic surgeons to check 
by the formula of dispersion mechanism whether the joints functioning 
effectively or not. 
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Conclusions: 

 It has been observed that, in certain diseased and or old synovial joints, the 

movement of the fluid into or out of the cartilage resisted and therefore the 

temperature does rise. The temperature does rise in old and diseased joints 

as observed by varying the values of parameters from its normal values. 

These values refer to old age and/or diseases affecting degeneration of 

synovial fluid and or cartilage. 

 

 Temperature rises, resulting even if they are not significant, make the 

synovial fluid less viscous. The overall temperature rise estimated was no 

more than 1.5℃ and there would exist some locally enhanced temperature 

gradients. 
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Future Work: 

 The current work can be expanded in future in number of ways, from 

extension of the mathematical model to include additional features of 

synovial joint, to investigate the additional lubricant-regulating and 

additional semi-permeable membrane materials, to analysis of the effects of 

arthritis related pharmaceuticals on bioengineered synovial fluid composition 

and function. 

 

 It has been observed that under suitably designed applied magnetic fields 

may improve the performance characteristics of the synovial joint. Thus, the 

applied magnetic fields may be used for better articulation, particularly in 

diseased states, although there is considerable scope to further the 

development in this direction both theoretically and experimentally, 

particularly in isolating the paramagnetic properties of the synovial fluid in 

diseased states. The above mentioned results indicate that the application of a 

magnetic field, in the bio-system should be further studied for possible useful 

medical and engineering applications. The results of this study can be used in 

study of magnetic therapy in the treatment of inflammatory arthritis. 
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Future Work 

 The problem of temperature modelling can be modeled by considering the problem 
of time depending and three dimensional problem. The finite element formulation 
may also be developed to determine the unknown increases temperature in the 
diseased natural joint or in artificial joint.   

 

 The permeability of the cartilage may be extended in terms of strain dependent and 
time dependent which is a more accurate representation of the permeability of 
articular cartilage. The problem of lubrication and generalized dispersion can be 
formulated by considering the hyperelastic model of the articular cartilage. 

 In biomechanical problems there will be flow of poorly conducting fluid that is 
electrohydrodynamic flow, to disperse the nutrients, proteins, fat substances and so 
on through porous nature of cartilages in synovial joints.  

 Therefore, we can extend our study to investigate the effect of viscoelastic parameter 
and electric number on the dispersion phenomena using electrorheological fluids in 
the future. 

 In near future the model for unsteady convective diffusion can be used for the 
development of mathematical model for the articular cartilage regeneration because 
key mechanism involved in the cartilage regeneration modeling cell migration, 
nutrient diffusion and depletion extracellular matrix synthesis and degradation at the 
defect site, both spatially and temporally. 
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